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The paper investigates the effects of different commercial carbon and nitrogen sources on the concomitant synthesis of amylase
and polygalacturonase enzymes with the aim of optimizing them for maximal enzyme production. The microorganism used in this
work was the fungus Trichoderma viride BITRS-1001, which had been previously identified as a highly active producer of amylase
and polygalacturonase enzymes. The results showed that the different commercial carbon and nitrogen substrate significantly
affected the concomitant syntheses of amylase and polygalacturonase in culture media supplemented with the different commercial
carbon and nitrogen substrates. The result obtained suggested that for optimal and concomitant synthesis of the enzymes by
Trichoderma viride BITRS-1001 in submerged fermentation, minimal medium supplemented with maltose and casein were the
carbon and nitrogen substrates of choice.

1. Introduction

Microbes are rich sources of enzymes [1]. In nature, they
have been endowed with vast potentials to produce array of
enzymes, which have been exploited commercially over the
years. Traditionally, enzymes have been extracted from plants
and animals. However, microbial enzymes have formed the
basis of commercial enzyme production. In recent years,
the potential of using microorganisms as biotechnological
sources of industrially relevant enzymes has stimulated inter-
est in the exploration of extracellular enzymatic activity in
several microorganisms isolated from different environments
owing to several reasons [2–7].

Amylase (EC 3.2.1.1) and polygalacturonase (EC
3.2.1.15) from microbial origin have high biotechnological
interest such as in the processing of foods, manufacturing
of detergents, textiles, pharmaceutical products, medical
therapy, in molecular biology, and in many industrial
processes as reviewed in [4, 6, 8–22]. While amylase has been

reported to have approximately 25% of the enzyme market
of industrial enzymes [17, 23, 24], microbial pectinases
have been reported to account for 25% of the global food
enzymes sales [4].

The synthesis of these enzymes by microorganisms has
been reported to be highly influenced by factors such as
carbon sources, temperature, pH, and operating parameter
such as incubation time in submerged culture [25, 26].
Factors like carbon, nitrogen sources and their concentra-
tions have always been of great interest to researchers in
the industry for the low-cost media design. It is also known
that 30–40% of the production cost of industrial enzymes is
estimated to be the cost of growth medium. Therefore, it is of
great significance to optimize the conditions for cost-efficient
enzyme production [26].

However, investigations on the impact of carbon and
nitrogen supplements revealed that not all carbon and
nitrogen sources would act as enhancer for simultaneous
production of these enzymes in a single fermentation system.
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Unlike in single-enzyme production, the roles of supple-
ments become very critical in multienzyme production as
not many supplements enhance simultaneous production
of all enzymes in a single bioreactor [27]. Production of
amylase and polygalacturonase in single fermentation can
be particularly effective and useful for industries where both
these enzymes are used together, such as food, animal feed,
and textile. The present study was therefore aimed at the
experimental investigations on the effect of carbon and
nitrogen sources of the concomitant synthesis of amylase and
polygalacturonase enzymes by Trichoderma viride BITRS-
1001 in a single fermentation.

2. Materials and Methods

2.1. Source of Microorganism. The fungus strain used in this
work was Trichoderma viride BITRS-1001, which had been
previously identified as a highly active producer of amylase
and polygalacturonase enzymes in the research laboratory of
the Department of Microbiology, The Federal University of
Technology Akure, Nigeria [28]. The culture was maintained
on Sabouraud Dextrose Agar slants incorporated with 0.1%
tetracycline kept at 4◦C and subcultured at regular intervals.

2.1.1. Cultural Conditions and Concomitant Production of
Amylase and Polygalacturonase in Submerged Cultivation
(SmC). The concomitant production of the hydrolytic
enzymes (amylase and polygalacturonase) was carried out in
250 mL conical flasks each containing 50 mL modified basal
medium of Arotupin [29]. The composition of the basal
medium included peptone 1 g; KH2PO4 1.05 g; NaNO3 4 g;
MgSO4 7H2O 0.1 g; Na2HPO4 2 g; sucrose 20 g and distilled
water 1000 mL. The medium was adjusted to a pH of 6.00.
A sterile cork borer of 15 mm diameter was used to cut a
disc from the advancing edge of a 5 days old fungal isolate.
The disc was used to inoculate the medium. Fermentation
carried out at 30◦C for the fungal isolates in a Gallenkamp
BKS-350-0010 orbital incubator shaker operating at 80 rpm
for 10 days. The following parameters were monitored daily:
growth (usually estimated as the dry weight of mycelium per
50 mL), pH, amylase, and polygalacturonase (PG) activities.

To investigate the influence of carbon and nitrogen
sources on the enzyme activities of T. viride BITRS-1001 in
submerged cultivation, sucrose was replaced with fructose,
maltose, lactose, and starch, while the mixture of sodium
nitrate and peptone was substituted with peptone, casein,
sodium nitrate, and urea.

2.1.2. Growth Determination of Fungal Isolate. The method
of Narasimha et al. [30] was employed. The mycelia growth
produced in the liquid culture medium was determined by
dry weight measurement. Whatman number 1 filter paper
was dried to constant weight at 80◦C, and the weight noted.
The content of the flask was filtered through the filter paper
to separate the mycelia mat and the culture filtrate. The
biomass of the culture (residue) was dried until a constant
weight was obtained. The growth yield per 50 mL of broth

was determined using a Mettler balance (PM 400). The
growth was calculated, thus

Growth
(
mg/50 mL

) = Weight of culture + filter paper

− initial weight of filter paper.
(1)

2.1.3. Determination of the pH of the Culture Filtrate. The
pH value of the culture filtrates was obtained by using
an electronic pH meter, Hanna pH209 that was initially
standardized with appropriate buffer solutions of pH 4, 7,
and 9. The electrode of the standardized pH meter was
inserted into the crude filtrate of the isolate. The values were
immediately read on the meter record and values recorded.
This was done throughout the period of the experimental
setup [31].

2.1.4. Assay for Amylase Activity of the Culture Filtrate. The
amylase activity of the culture filtrate was determined as
described by Sudharhsan et al. [24]. Crude culture filtrate
was used as enzyme sample. A 0.5 mL of culture filtrate
was boiled in a water bath (100◦C) for 20 minutes in order
to inactivate the enzyme and then cooled suddenly under
tap. Both heat treated and active samples were taken for
the assay. 1% starch substrate was prepared freshly in 0.1 M
phosphate buffer (pH 6.0). The reaction mixture containing
500 μL of substrate (starch) and 500 μL of enzyme solution
was incubated at 37◦C for 15 minutes for enzymatic reaction.
After incubation, 1 mL of DNSA was added and heated
for 15 minutes in a boiling water to obtain a coloured
reacted mixture. Absorbency of the solution was measured at
550 nm using UV-VIS spectrophotometer (UNICO 1100RS
spectrophotometer).

The heated enzyme mixture served as a blank. One unit
of amylase enzyme activity was defined as the amount of
starch hydrolyzed during 15 minutes incubation at 37◦C for
1 mL of extract. Serial dilutions of glucose were treated in the
same manner and the absorbance reading was taken and used
to plot a standard curve for glucose. The unknown amount
of reducing sugar in each test sample was extrapolated from
the standard curve [32].

2.2. Assay for Polygalacturonase Activity of the Culture Filtrate.
Polygalacturonase (PG) activity of the culture filtrate was
assayed by measuring the amount of reducing sugar released
in the reaction mixture. The reaction mixture consisted
of 1 mL of 1.2% (w/v) pectin in 1 mL of 0.1 M citrate-
phosphate buffer of pH 5.0 and 1 mL of crude filtrate (crude
enzyme solution). Control experiment tubes contained the
same amount of substrate and 1 mL of the crude filtrate
(crude enzyme solution) boiled for 15–20 minutes. Both the
experimental and control tubes were incubated at 35◦C for 3
hours. The reducing sugar released into the reaction mixture
was determined by the method of 3,5-Dintrosalicyclic acid
(DNSA) reagent [31]. One unit of polygalacturonase activity
was defined as the amount of enzyme in 1 mL that would
liberate reducing sugar equivalent to 1 μg galacturonic acid
per minute under the specific conditions of reaction.
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A 3 mL of DNSA reagent (NaOH 10 g; Na/K-tartrate 20 g;
3,5-dinitrosalicyclic acid 10 g and distilled water 1000 mL)
was added to 1 mL of each of the test sample in the test tubes.
The mixture was properly mixed and heated in boiling water
for 15 minutes and cooled in tap water. The absorbance was
taken at 540 nm with a UNICO 1100RS spectrophotometer.
Serial dilutions of galacturonic acid were treated in the
same manner and the absorbance reading taken and used
to plot a standard curve for polygalacturonase (PG). The
unknown amount of reducing sugar in each test sample was
extrapolated from the standard curve.

2.3. Statistics. The numerical data obtained during the
investigations were subjected to analysis of variance and
inferences were made at 95% confidence limits using the
SPSS 15.0 software package. Duncan’s new multiple range
test was used to separate means.

3. Results

3.1. Effects of Different Carbon Sources on Growth and Enzyme
Activities of T. viride BITRS-1001. The mycelia dry weight,
pH values, protein content, amylase, and polygalacturonase
activities of the culture filtrates of T. viride 30◦C ± 2
were determined using various commercial carbon sources
namely starch, lactose, fructose, maltose, and sucrose. All the
commercial carbon sources supported good growth of the
fungal isolates as well as the concomitant production of the
enzymes of interest. T. viride had the highest biomass yield of
0.566 g/50 mL of culture in starch, followed by 0.460 g/50 mL
in fructose, 0.317 g/50 mL in maltose, and 0.298 g/50 mL
in lactose, while sucrose had the least biomass yield of
0.1560 g/50 mL culture medium (Figure 1). The pH values
of the culture filtrate ranged from 3.60 to 6.39 for sucrose,
5.12 to 6.87 for fructose, 5.35 to 6.73 for starch, 5.20 to
6.45 for maltose, and 5.24 to 6.40 for lactose (Figure 2). The
highest amylase activity of T. viride was recorded within 24
hours from maltose medium with activity of 878.33 U/mL,
sucrose (448.667 U/mL on the 6th day), starch (360.16 U/mL
on the 2nd day), and fructose (350.5 U/mL on the 2nd
day) while lactose has an activity of 230 U/mL within 24
hours (Figure 3). In the case of polygalacturonase, lactose
medium had polygalacturonase activity of 3500 U/mL on
the 7th day, maltose (3033 U/mL on the 3rd day), fructose
(1133.33 U/mL on the 1st day), starch (633.33 U/mL on the
5th day), and sucrose with activity 2816.7 on the 3rd day
(Figure 4).

3.2. Effects of Different Nitrogen Sources on Growth and
Enzyme Activities of T. viride BITRS-1001. The effects of
different nitrogen sources on the growth and enzyme
production are shown in Figures 5–8. The various nitrogen
sources stimulated the growth of the fungus and the
production of amylase as well as polygalacturonase in
varying degrees. T. viride BITRS-1001 grew best in media
containing casein and peptone as nitrogen sources with
mycelia growth of 0.401 g/50 mL on day 5 and 0.400 g/50 mL
on day 10, respectively. Peptone + sodium nitrate had
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Figure 1: Effect of different carbon sources on the biomass of T.
viride BITRS-1001 in submerged culture (SmC).
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Figure 2: pH variations in the culture media during fermentation
in submerged culture (SmC).
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Figure 3: Effect of different carbon sources on amylase activity of
T. viride BITRS-1001 in submerged culture (SmC).
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Figure 4: Effect of different carbon sources on polygalacturonase
activity of T. viride BITRS-1001 in submerged culture (SmC).

the maximum biomass growth of 0.317 g/50 mL on day 7,
sodium nitrate (0.310 g/50 mL on day 8), and urea with
a value of 0.186 g/50 mL on day 6 of the culture medium
(Figure 5). The pH variations in the culture media during
fermentation in submerged culture (SmC) are indicated in
Figure 6. The pH values of the culture medium during the
period of incubation ranged from 5.45 to 7.47 for peptone,
6.00 to 6.88 for sodium nitrate, 6.0 to 8.26 for urea, 5.43
to 6.77 for casein, and 5.38 to 6.58 for peptone + sodium
nitrate. The relationships between the varying pH and the
measured amylase and polygalacturonase activities in the
crude filtrate are also shown in Figures 9 and 10. The
highest amylase activities per nitrogen sources are as follows.
Casein medium 1341.667 U/mL, peptone + sodium nitrate
878.33 U/mL, urea 682 U/mL, and peptone 342.0 U/mL,
respectively, within 24 hours, while sodium nitrate had
amylase activity of 1253.33 U/mL on the 4th day (Figure 7).
For the polygalacturonase activities of T. viride BITRS-
1001 in the various nitrogen substrates, peptone had the
highest polygalacturonase activity of 11466.67 U/mL within
24 hours, sodium nitrate (6933.3 U/mL on the 2nd day),
casein (9533.33 U/mL on the 3rd day), peptone + sodium
nitrate (3000 U/mL on the 4th day), and urea 3833.33 U/mL
on the 3rd day (Figure 8).

4. Discussion

The result of this investigation showed that the fungus T.
viride BITRS-1001 had the ability to utilize the various
carbon and nitrogen sources as good substrates for growth
as well as for the concomitant production of amylase
and polygalacturonase in submerged cultivation. Fungi
being heterotrophs obtain their required nutrients from the
organic matter in the environment through the presence of
efficient and extensive systems of powerful enzymes. Thus,
they are able to utilize complex carbon sources as their
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Figure 5: Effect of different nitrogen sources on the biomass of T.
viride BITRS-1001 in submerged culture (SmC).
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Figure 6: pH variations in the culture media during fermentation
of T. viride BITRS-1001 in submerged culture (SmC).

energy source [33, 34]. Of the carbon sources tested, starch
(a polysaccharide) supported the maximum biomass yield
followed by fructose (monosaccharide). The least biomass
yield was observed in the disaccharides in the following
order: maltose, lactose, and sucrose. The dominance of
polysaccharides over disaccharides and monosaccharides in
supporting the growth of fungi had earlier being reported
by [35] and Akinyosoye et al. [2], who reported that
starch supported the maximum biomass yield of Geotrichum
candidum and Phoma sorghina better than disaccharides
(maltose and lactose), monosaccharides (glucose, fructose,
and galactose). Arotupin [36] on the contrary however
reported that starch supported the least biomass yield
of Aspergillus spp. grown in submerged cultivation. The
observed maximum biomass yield of T. viride BITRS-1001
on starch supplemented medium may possibly be due to
the fact that starch is the most abundant organic carbon
source in the environment serving as the major reserve
carbohydrate of all higher plants, with the fact that it is
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Figure 7: Effect of different nitrogen sources on amylase activity of
T. viride BITRS-1001 in submerged culture (SmC).

extensively degraded by α-amylase, which is readily produced
by the fungus [8].

In the course of the investigation, it was observed that
the pH of the culture media varied over a wide range of
values within the acidic region on the pH scale. Fungi
generally alter the pH of the medium in which they grow,
due to uptake of the anions or cations in the medium
[34, 37]. Therefore, the varied changes witnessed in the
pH values of the culture media may be as a result of
the utilization of some compounds in the culture media.
Nonetheless, the confinement of the variations in pH within
the acidic region on the pH scale is in consonance with
previous reports that fungi are generally acidophilic [34]. In
relating the changes in the pH of the culture media with the
production of the enzymes in question using scatter plots,
it was observed that the alterations in the pH of the culture
media produced significant effects on the activities of the
different enzymes investigated. The activity of certain fungi
extracellular digestive enzymes had earlier been reported to
be affected by the pH of their culture media [38]. Although T.
viride BITRS-1001 grew over a wide range of pH, the highest
enzyme activities were noticed at pH values 5.78 for amylase
and 5.99 for polygalacturonase. pH values below or above the
observed range resulted in decrease in the activities of the two
enzymes.

Earlier investigations reported optimum amylase pro-
duction by Aspergillus ochraceus at pH 5.5 [39], Streptomyces
albidoflavus at pH 6.5 [40], and Aspergillus awamori at pH
5.5 [27]. Optimum polygalacturonase activity by A. niger
occurred at pH 5.5 [26]. Changes in pH do affect the affinity
of enzymes for substrates, especially when the active site
has been altered. A decreased saturation of the enzyme with
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Figure 8: Effect of different nitrogen sources on polygalacturonase
activity of T. viride BITRS-1001 in submerged culture (SmC).
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the substrate as a result of the decrease in affinity may be
responsible for the decline in either side of the optimum or
may be due to the effect of pH on the stability of enzymes.
This leads to a considerable denaturation and subsequent
inactivation of the enzymes [29]. The reduction observed in
the enzyme activity of T. viride BITRS-1001 at pH values
other than the optimal pH could also be attributed to a
probable change in the state of the ionic groups involved in
the maintenance of the active conformation of the enzymes.
Extreme pH has been reported to initiate chemical reactions
that can alter, cross-link, or destroy amino residues of the
protein molecules resulting in irreversible inactivation. Since
enzymes are proteins, variations in pH will ultimately affect
the ionic characters of the important acidic and basic groups
in the active center which are essential for the catalytic
activities of the enzymes [29].

In addition, the results from this investigation on
the effects of the different commercial carbon substrate
tested revealed varied responses of T. viride BITRS-1001 in
concomitantly producing amylase and polygalacturonase in
culture media supplemented with the different commercial
carbon substrates. Maximum amylase and polygalacturonase
activities were recorded on maltose supplement medium
within 24 hours and 72 hours, respectively. The addition of
carbon sources in the form of either mono saccharides or
polysaccharides had earlier been reported to influence the
production of enzymes in vitro [24]. Glucose was reported
to have supported amylase activity in Aspergillus sp. JG1
12 [6], glucose and lactose in A. awamori [27], and starch
in Aspergillus spp. [41], while pectin has been reported to
induce the polygalacturonase activity in submerged culture
[9, 42]. However, the ability of maltose to support maxi-
mum activities of amylase and polygalacturonase within the
shortest incubation time is desirable in comparison to the
other sugars tested in industrial processes. Thus, maltose was
chosen as the carbon substrate of choice for the remainder of
the investigation in testing for the effect of different nitrogen
substrates on the concomitant production of amylase and
polygalacturonase by T. viride BITRS-1001 in submerged
culture.

Of the nitrogen sources tested, the organic nitrogen
substrates, peptone and casein, supported better biomass
yield and enzyme activity of the fungus as compared to
the inorganic nitrogen substrates tested. The observation
is in agreement with [29] which reported that organic
nitrogen sources supported the good growth of fungi
more than inorganic nitrogen sources. Vahidi et al. [43]
reported that good growth and antifungal activities were
observed when complex nitrogen sources—yeast extract,
peptone—were used compared to inorganic nitrogen source
(NH4Cl and NaN03). Akhilesh et al. [9] equally reported
best polygalacturonase production with Mucor circinelloides
ITCC 6025 when casein hydrolysate and yeast extract were
used together, while Sasi et al. [41] reported that organic
nitrogen induced the highest amylase activity in estuarine
strain of Aspergillus spp. This preponderance of organic
nitrogen sources on inorganic sources might be due to the
fact that the organic nitrogen sources were better good
growth stimulators. During growth and enzyme production,

the fungus strain probably hydrolyzed the organic nitrogen
releasing their mineral component and other growth factors
in them into constituents that can be easily incorporated into
cellular metabolism [31].

Factors like carbon and nitrogen sources and their
concentrations have always been of great interest to the
researchers in the enzyme industry for the low-cost media
design. It is also known that 30–40% of the production
cost of industrial enzymes is estimated to be the cost of
growth medium. Therefore, it is of great significance to
optimize the conditions for cost-efficient enzyme production
[26]. However, investigations on the impact of carbon and
nitrogen supplements had revealed that not all carbon and
nitrogen sources would act as enhancer for simultaneous
production of these enzymes in a single fermentation system.
Unlike in single-enzyme production, role of supplements
becomes very critical in multienzyme production as not
many supplements enhance simultaneous production of all
enzymes in a single bioreactor [27]. The present study thus
indicated that T. viride BITRS-1001 produced high amounts
of amylase and polygalacturonase in minimal medium,
which has been modified with certain carbon and nitrogen
sources concomitantly. So, it is concluded that minimal
medium can be used under submerged fermentation for
the concomitant production of amylase and polygalactur-
onase in submerged cultivation. Production of amylase and
polygalacturonase in single fermentation can be particularly
effective and useful for industries where both these enzymes
are used together, such as food, animal feed, and textile.
Further experiments will, however, have to be done to
purify the secreted amylase and polygalacturonase as well as
stability studies will have to be performed to enhance the
application of enzyme to commercial level.
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