
 

 
Chaotic Modeling and Simulation (CMSIM)  4: 647-656,  2013 

 

_________________ 

Received: 6 August 2013 / Accepted:  28 September 2013 

© 2013 CMSIM                                                                                ISSN 2241-0503 

Layer-Recurrent Neural Network Modelling of 

Reactive Distillation Process 
 

Abdulwahab GIWA
1
 and Saidat Olanipekun GIWA

2
 

 
1 Federal University of Technology, School of Engineering and Engineering 

Technology, Chemical Engineering Department, Gidan Kwano, Minna, Nigeria  
2
Ankara University, Ankara, Turkey  

E-mails: a.giwa@futminna.edu.ng  and  giwa@ankara.edu.tr  

 
Abstract: Reactive distillation is one of the complex processes encountered in process 

industries as a result of the integration of both reaction and separation in a single unit. 

Nowadays, the modelling of this process has become a big challenge to Process 

Engineers. The use of a reliable model that can handle complex functions is very 

necessary to represent this complex process. It has been discovered that Neural Network 

can be used to handle complex functions very well. Therefore, the modelling of the 

reactive distillation process considered in this work has been carried out with the aid of a 

dynamic neural network known as Layer-Recurrent Neural Network. The simulated 

results obtained from the developed Neural Network models were compared with the 

measured results to confirm the validities of the developed models. 
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1. Introduction 
In recent years, integrated reactive separation processes have attracted 

considerable attentions in both academic research and industrial applications 

(Völker et al., 2007; Giwa and Karacan, 2012a). One of these processes which is 

known as reactive distillation is potentially attractive whenever conversion is 

limited by reaction equilibrium (Balasubramhanya and Doyle III, 2000; Giwa 

and Karacan, 2012a).  

Reactive Distillation (RD) combines the benefits of equilibrium reaction 

with a traditional unit operation (in this case, distillation) to achieve a 

substantial progress in not only promoting the reaction conversion through 

constant recycling of unconverted materials and removal of products but also 

reducing the capital and operating costs in one way by reducing the number of 

equipment units (Giwa and Karacan, 2012a). Moreover, its other advantages 

include improved selectivity, lower energy consumption, scope for difficult 

separations and avoidance of azeotropes (Jana and Adari, 2009). However, due 

to the integration of reaction and separation, reactive distillation exhibits 

complex behaviours (Khaledi and Young, 2005) such as steady state 

multiplicity, process gain sign changes (bidirectionality) and strong interactions 

between process variables (Jana and Adari, 2009). These complexities have 
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made the modelling of Reactive Distillation Process extremely difficult (Giwa 

and Karacan, 2012b; Giwa and Giwa, 2012). As such, a robust tool that can 

handle complex functions very well is needed to represent this complex process. 

One of these tools has been discovered to be Neural Network model because, 

according to Beale et al. (2010), Neural Network can be trained to handle 

complex functions. 

Neural Network model can be viewed as a nonlinear empirical model that is 

especially useful in representing input-output data, in making predictions in 

time, and in classifying data (Himmelblau, 2000). Neural Network can be highly 

nonlinear, can learn easily, requires little or no a priori knowledge of model 

structure, is fault-tolerant and can handle complex problems that cannot be 

satisfactorily handled by the traditional methods (MacMurray and Himmelblau, 

2000). There are many kinds of Neural Network models available in the 

literature. For instance, a simple classification can be: Static Neural Network 

and Dynamic Neural Network. It is perceived that a dynamic network, 

especially Layer-Recurrent Network (LRN), will be better in representing this 

complex Reactive Distillation Process because of the presence of a delay 

ensuring proper dynamics in each of its layers except in the last one. 

According to the information gathered from the literature, Giwa and 

Karacan (2012a) used three different types of delayed neural network 

(Nonlinear AutoRegressive (NAR), Nonlinear AutoRegressive with eXogenous 

inputs (NARX) and Nonlinear Input-Output (IO)) models to represent a reactive 

distillation column in predicting the temperatures of the top and the bottom 

sections of the reactive distillation column used for the production of ethyl 

acetate and they were able to obtain very good results from both NAR and 

NARX models while the results given by IO models were found not to be 

satisfactory. Also, Giwa and Karacan (2012c) developed two nonlinear black-

box (treepartition and sigmoid network NARX) models for the Reactive 

Distillation Process used for the production of ethyl acetate from the 

esterification reaction between acetic acid and ethanol and found that sigmoid 

network NARX model was better than treepartition NARX model for the 

reactive distillation process studied in their work. 

In this work, Reactive Distillation Process is aimed to be modelled with the 

aid of Layer-Recurrent Neural Network using the metathesis reaction of trans-2-

pentene to trans-2-butene and trans-2-hexene as the case study. 

 

2. Procedures 
The methods used for the accomplishment of this work are as outlined 

below. 

 

2.1 Data Acquisition 
The diagram of the metathesis reactive distillation column, developed with 

the aid of Aspen HYSYS (Aspen, 2011), used for the production of trans-2-

butene (obtained in high purity at the top segment of the column) and trans-2-

hexene (obtained in high purity at the bottom segment of the column) from 

trans-2-pentene, and from which the measured data used for the neural network 
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model development were generated is as shown in Figure 1 below. As can be 

seen from the figure, the column had one feed stream and two product streams. 

The olefin metathesis reaction that occurred in the column was a reversible type 

given as shown in Equation 1. 

 
Fig. 1. Process flowsheet for metathesis reactive distillation process 

 

126841052 HCHCHC eqK
+ →←      (1) 

 

The data used for the development of the process in Aspen HYSYS 

environment are as given in Table 1. 
 

Table 1. HYSYS metathesis reactive distillation process development data 

Parameter Value 

Feed 

  Flow rate (mL/min) 35 

  Temperature (K) 298.15 

  Pressure (atm) 1.11 

  Feed Composition (Mole fraction) 

  trans-2-pentene 0.999998 

  trans-2-butene 1.00E-06 

  trans-2-hexene 1.00E-06 

      

Fluid Package UNIQUAC 
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Column 

  Type Packed 

  Packing type Raschig Rings (Ceramic) 0.25 inch 

  No. of segment 15 

  Feed segment 8 

      

Reaction 

  Type Equilibrium 

  Segment 6 - 10 and reboiler 

  Keq source Gibbs Free Energy 

  Basis Molar concentration 

  Phase Liquid 
 

In the process development, reflux ratio and reboiler duty were chosen as 

the manipulated (input) variables while top segment and bottom segment 

temperatures were selected as the process (output) variables. By using the 

random data set values of the manipulated variables built with the aid of 

Parametric Utility of Aspen HYSYS, the column was run and the top segment 

and the bottom segment temperatures were obtained as the measured values of 

the output variables. Two different data sets were generated from the Aspen 

HYSYS system of the process. One was used for the training while the other 

was used for the testing of the Layer-Recurrent Neural Network models. 

 

2.2 Modelling and Simulation 
In the modelling of the Reactive Distillation Process in MATLAB 

(Mathworks, 2012) environment, the data sets obtained from Aspen HYSYS 

system of the process were converted from concurrent types to sequential ones 

because those were the types required by the dynamic Layer-Recurrent Neural 

Network. The parameters used for the formulation of the Neural Network 

models of the process considered in this work are as given in Table 2. 
 

Table 2. Layer-Recurrent Neural Network model formulation parameters 

Parameter  Value 

Number of inputs  2 

Number of outputs  2 

Number of layers  2 

Number of neurons in hidden layer 7 

Hidden layer transfer function tansig 

Output layer transfer function purelin 

Training algorithm  Levenberg-Marquardt 
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Owing to the fact that there were two outputs, and even with two inputs, the 

structure of the neural network had two models in it – one for each process 

variable; that is, one model was for top segment temperature and the other was 

for bottom segment temperature. The structure of the developed models is 

shown below in Figure 2. 

 

( )tTtop
ˆ

( )tTbot
ˆ

 
Fig. 2. Layer-Recurrent Neural Network of metathesis RD process 

 

In order to determine the validities of the developed models, they were 

simulated and their performance values were calculated. The performance 

criteria used were fit values (indicating the percentage of the data accounted for 

by the developed models), means of absolute errors and sums of squared errors. 

 

3. Results and Discussions 
The acquired measured data sets of the input and the output variables used 

for training and testing the neural network models are given in Figures 3 and 4 

respectively for the top segment and the bottom segment temperatures. 
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Fig. 3. Top segment temperature training and testing data sets 
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As can be seen from Figures 3 and 4, there were corresponding changes in 

the responses of the two segment temperatures as a result of the changes in the 

input variables. Also noticed from the results shown in Figures 3 and 4 was that 

the lengths of the training and the testing data for both segment temperatures 

were not the same but the overall limits of the testing manipulated variables 

used were within the ones used for the generation of the training data. The 

different data length was made so in order to test the robustness of the 

developed neural network model to another data with length different from that 

of the one used for its training. 
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Fig. 4. Bottom segment temperature training and testing data sets 

 

After training the Layer-Recurrent Network Models of the process, even 

though the models could not be obtained as physical ones, they were simulated 

using the manipulated variable values used for the training and the performance 

values of the models obtained from the training simulation are as shown in 

Table 3. It was observed from the table that the fit values of the models were 

appropriately very high and the means of absolute errors and the sums of 

squared errors were low enough to say that the models were well trained. 

Further considering the fit values of the training simulations, it was discovered 

that the developed neural network models could account for approximately 99% 

of the data used for developing them. 
 

Table 3. Performance values of network training simulation 

Performance value 
Performance criterion 

Ttop Tbot 

Fit value 99.08 99.27 

Mean of absolute errors 0.04 0.04 

Sum of squared errors 0.80 1.33 
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In addition, the top and the bottom segment temperatures obtained from the 

training simulations of the developed neural network models were plotted 

together with the measured ones and their graphs are as shown in Figures 5 and 

6 respectively for the top segment temperature and the bottom segment 

temperature profiles. From Figure 5, it was observed that there was a good 

relationship between the measured and the simulated top segment temperature 

profiles because, as seen from the graph, the trends of the two plots were found 

to follow each other very well. Also, as noticed from Figure 6, good relationship 

was found to exist between the profiles of the bottom segment temperatures 

measured and those estimated with the developed model. The good relationships 

between the plots contained in Figures 5 and 6 have been discovered to be in 

support of the excellent performance values of the models (see Table 3). 
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Fig. 5. Measured and simulated top segment temperatures 
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Fig. 6. Measured and simulated bottom segment temperatures 
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Apart from simulating the developed models with the manipulated (input) 

variables used for the training, testing data set generated for the purpose of 

model testing, and which was not used for the training of the models, was also 

used to simulate the developed models and the performance values obtained 

from the testing simulations are as given in Table 4. As can be seen from the 

table, in the testing simulation also, the fit values were found to be very high. In 

addition, the means of absolute errors and the sums of squared errors for both 

the top and the bottom segment temperatures were obtained to be very low and 

appropriate enough for good models.  

 

Table 4. Performance values of network testing simulation 

Performance value 
Performance criterion 

Ttop Tbot 

Fit value 98.74 98.63 

Mean of absolute errors 0.05 0.07 

Sum of squared errors 0.95 3.15 

 

In addition, the representations of the Reactive Distillation Process of this 

work by the developed neural network models were as well investigated by 

plotting the testing simulation results of both the top and the bottom segment 

temperatures against the measured ones as shown in Figures 7 and 8, 

respectively. 
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Fig. 7. Top segment simulation results of neural network testing 
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Fig. 8. Bottom segment simulation results of neural network testing 

 

According to the results shown in Figures 7 and 8, the 45 degree lines given 

by the plots of the testing simulations of the top and the bottom segment 

temperatures against the measured ones were found to be other indications of 

the good representations of the Reactive Distillation Process by the developed 

neural network models. 

It has thus been seen that the developed neural network models for the top 

and the bottom segment temperatures of the reactive distillation column have 

been found to perform very well both in the training and in the testing 

simulations. The good performances obtained from the developed models have 

demonstrated the versatility of neural network in representing complex 

processes very well. 

 

4. Conclusions 
The very high fit values, the low means of absolute errors and the low sums 

of squared errors obtained from the training and the testing simulations of the 

Layer-Recurrent Neural Network models developed for the olefin metathesis 

Reactive Distillation Process, used for the production of trans-2-butene and 

trans-2-hexene from trans-2-pentene, have confirmed the validities of the 

developed models for the top and the bottom segment temperatures of the 

column in which the process was accomplished. Therefore, Layer-Recurrent 

Neural Network model has been revealed to be an excellent tool in representing 

the complex Reactive Distillation Process. 
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