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ABSTRACT 

This paper presents mathematical model for the study of traffic flow on the highways.  The effect of 

the density of cars on the overall interactions of the vehicles along a given distance of the road was 

investigated. We also observed that the density of cars per mile affects the net rate of interaction 

between them. 
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Contribution/ Originality 

This study uses new estimation methodology to determine the effect of the density of cars on 

the overall interactions of the vehicles along a given distance of the road. 

 

1. INTRODUCTION 

Mathematical model usually describes a system by set of variables and equations that establish 

relationship between these variables. The values of these variables can be practically anything. Real 

or integer numbers, Boolean values of strings for example. These variables represent some 

properties of the system, for example, event occurrence (yes/no). 

Road transportation is the transport of passengers or goods on roads. This is also one of the 

most common means of transportation by which passengers can move themselves and their goods 
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from one station to another to achieve this, they have to use the roadways alongside with other 

millions of people given rise to millions of vehicles on the roadways, these vehicles interact with 

each other an impact overall movement of traffic which pose great challenge to the traffic-flow. In 

an attempt to solve these daily challenges on the roadways, a traffic flow model was developed to 

help the transportation engineer to understand and express the property of traffic flow on the 

highways.  

Road transportation is still the safest means of modern movement within a city or community 

around the world. It is the one in which if a car is breakdown the passenger can easily highlight, 

change the car or walk the rest of the journey. Other means of transportations are  air, canal, rail but 

all these do not take us to our door steps [1] .  

Traffic flow is a continuous movement of vehicles along a road or street at a particular time. 

Traffic flow model describes a precise mathematical way of how groups of vehicles at a particular 

time move, interact and how their movements are being affected by density, spotlights and other 

infrastructures on the road ways. Whether the task is to evaluate the capacity of existing roadways 

or design new roadways, most transportation engineering projects begin with an evaluation of 

traffic flow. Therefore, the transportation engineers need to have a firm understanding of what type 

of flow that occurs in a given situation that will help in deciding which of the analysis method and 

descriptions are most relevant to model. Thus, the traffic flow can be divided into two primary 

types namely; Uninterrupted-Traffic-Flow and Interrupted-Traffic-Flow.  

Uninterrupted traffic-flow is a flow that is regulated by vehicle-vehicle interactions and 

interactions between vehicles and the roadways. For instance vehicles traveling on inter-state 

highway are participating in an uninterrupted traffic-flow while Interrupted-traffic-flow is a flow 

regulated by external means, such as traffic signal. Under interrupted flow, vehicle-vehicle 

interactions and vehicle-roadway interactions play a secondary role in defining the traffic-flow. 

The factors affecting traffic-flow provides a great opportunity to define an efficient model and 

mechanism to be adopted to rise up to the challenge. Traffic-flow is being affected by flow (flux), 

speed and density. 

The scientific study of traffic flow had its beginning in the 1930s with the application of 

probability theory to the description of road traffic and with the pioneering studies conducted at the 

Yale Bureau of Highway Traffic on the study of models relating Volume and speed and the 

investigating of performance of traffic at intersections. At Los Alamos Labs, and General motors, 

engineers developed a model on Traffic flow with equations to conserve the momentum of the cars 

and show how the density of traffic affects the speed at which the car travels. 

 After World War II, with tremendous increase in the use of automobiles and the expansion of 

the highway system, there was also a surge in the study of traffic characteristics and the 

development of traffic-flow theories in December 1959, the first international symposium on the 

theory of Traffic flow was held at the General motors Research Laboratories in Warren, Mich.  A 

glance through the proceedings of these symposia will provide good indication of the tremendous 

developments over the last 40 years in the understanding and the treatment of traffic-flow 
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processes. Yet, even as the traffic-flow theory (from various quarters) is increasingly, better 

understood and more easily characterized through advanced computation technology the 

fundamentals are important today as in the early days. They form the foundation for all the 

theories, techniques, and procedures that are being applied in the design, operation and 

development of advanced transportation systems. There are numerous texts and literature on this 

subject such as ([2], [3], [4], [5], [6], [7], [8], [9], [10], [11],[12]) just to mention a few. 

However, in this paper we consider the general effect of density of cars and distance over a 

period of time on the interaction between the vehicles. 

 

2. MATHEMATICAL FORMULATION 

Mathematical modeling is the use of a simplified mathematical representation of a real world 

system, process or theory.  Mathematical models are developed in order to enhance our ability to 

understand, predict, and possibly control the behavior of the system being modeled. 

Akinrelere and Ayeni [2] described mathematical modeling to be translation of physical 

problem using mathematical representation or equation and solves then using the result in the real 

problems. To achieve this aim some deduction must be made. This takes place in at least three 

stages namely: 

 Formulate a model 

 Deduction of mathematical implication within the model 

 Interpretation of former steps in real term. 

Mathematical models may also involve diagrams and graph, such as electronic or computer 

circuit diagrams, or stock-market index performance charts. 

 

2.1. Modeling Traffic Flow 

We consider the flow of cars on a long highway under the assumptions that cars do not enter or 

leave the highway at any one of the points. This road with a variable number of cars from none up 

to the maximum carrying capacity of the road 

The amount of cars on the stretch from A  to B  can be modeled by taking the x -axis along 

the highway and assume that the traffic flows is in the positive direction. Suppose ),( tx  is the 

density representing the number of cars per unit length at the point x of the highway at a time t , and 

( , )q x t  is the flow of cars per unit time. This equation is used to converse the momentum of cars 

and to show how the density of the traffic will affect the speed at which the cars travel 

 

Fig-1. Traffic Flow 

           A                                                                                                        B 

q                                                                                                 q                     
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We assume a conservation law which states that; the change in the total amount of physical 

quantity contained in a region of space must be equal to the flux of the quantity across the 

boundary of that region. In this case, the time rate of change of the total number of cars in any 

segment A x B  of highway is given by  

2 2

1 1

( , )
x x

x x

d d d
x t dx dx

dt dt dt


  

                                            (1)

 

1 2( , ) ( , )q x t q x t
                                              (2)

 

Equation (2) measures the flow of cars entering the segment A  minus the flow of cars leaving the 

segment B . 

This rate of change in (1) must be equal to the net flux across A  and B  given by (2). Thus we 

have the conservation equation of the form 

2 2 2

2 1 1
1 2( , ) ( , ) ( , )

x x x

x x x

d q
x t dx q x t q x t dx dx

dt t x




 
    

   
                            (3) 

Then (3) becomes 

 

2

1

0

x

x

q
dx

t x

  
  

  


                                                           (4)

 

Since the integrand in (3) and (4) continuous and it holds for every segment  ,A B , then it 

follows that the integrand must vanish in order to have the partial differential equation given by 

0
q

t x

 
 

                                                              (5)

 

We now introduce additional assumptions which are supported by both theoretical and 

experimental findings: 

 Measuring the velocity and position of each individual’s car on the road is too difficult. 

So, this model views the distribution of cars by looking at the density of the cars which is 

the number of cars per mile on the road. We assume that the density is the only property of 

the cars which matters. 

 The second assumption follows from the first. Only the density of the cars matters. 

 Therefore the average velocity of the cars at any point depends on the density of the cars. 

 

According to these assumptions, the flow rate q depends on x and  t  only through the density, 

that is, ( )q Q  for some function Q  this relation seems to be reasonable in the sense that the 
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density of cars surrounding a given car indeed controls the speed limits, weather conditions, and 

road characteristics. 

We consider here a particular relation q v  where v  is the average local velocity of cars 

and we assume that (4) is a function of   to the first approximation, in view of this relation, (5) 

reduces to a nonlinear hyperbolic partial differential equation of the form 

( ) 0C
t x

 


 
 

                                               (6)

 

where  

( ) ( ) ( ) ( )c q v v       
                                (7)

 

 

In general, the local velocity )(V  is a decreasing function of  , where )(V  has a finite 

maximum value maxV  at 0 and decrease to zero at m  max  . For the value of 

m   the cars are bumper to bumper. Since 0)(,   qVq when 0 and m   this 

means that q is an increasing function of  until it attains a maximum value max mq q  and some 

m   and then decreases to zero at m   . Both )(q and )(V  are shown in )(i  above. 

With the wave propagation velocity, (7) becomes 

( ) ( ) ( )c V V                        (8) 

 

2.2. Equation of the Model 

This section presents the equation of the model as follows: 

The equation of the model is given by 

( ) 0

( ) ( ) ( ) ( )

c
t x

c q v v

 


    

  
  

  
    

                  (9)

 

Since ( ) 0,v    )()(  vc 
 

Where 
 

)(c  is the wave propagation velocity 

)(v
 
is the car velocity (miles/hour or kilo/hour) 

       is the density (Vehicle/miles or vehicle/kilo) 

t         is the time (hours or seconds) 

x        is the distance (miles or kilometer) 

q        is the flux (vehicle/hour) 
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3. SOLUTION OF THE MODEL 

Recall from (6) that  

( ) 0c
t x

 


 
  

 
 

The simplest first order non-linear wave equation is given by  

( ) 0, , 0t xu c u u x t     
                (10) 

where ( )c u  is a given function of u . Therefore let (6) be subjected to the initial condition given 

by 

( ,0) ( ),u x f x x  
 

Therefore, we can write that ( ,0) ( ),x f x x       

Since (6) is a non-linear partial differential equation, we are going to solve the system by the 

method of characteristics. In order to construct continuous solutions, we consider the total 

derivative d  given by ( ,1)x  such that:  

d d
d dt dx

dt dx

 
  

                  (11)

 

d d d dx

dt dt dx dt

  
 

                 (12) 

Therefore, 

t x

d dx

dt dt


 

 
   

                        (13)

 

It follows from this result that (6) can be regarded as the ordinary differential equation; 

0
d

dt




                                (14)

 

To assume that the point ( , )x t  lie on a curve . then 
dx

dt
represents the slope of the curve at 

any point p on  .
 

Thus along any member of the curves  which are the solution curves of 

( )
dx

c
dt


                  (15)

 

These curves  are called the characteristics curves of the main equation (6). Thus, the 

solution of (6) has been reduced to the solution of a pair simultaneous ordinary differential 

equation (14) and (15). Equation (14) implies that  is constant along each characteristics curve 

 and each )(c remains constant on the curve. Therefore (15) shows that the characteristics of 

equation (1) from a family straight lines in ( , )x t  plane with slope )(c corresponds to the value 
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of  on it. If the initial point on the characteristic curve  is denoted by  and if one of the 

curves 
 

intersects, 0t  at x , then (0) ( )f        

So,  

( ), (0)
dx

c x
dt

                    (16) 

 0, (0)
d

f
dt


                    (17) 

    Therefore, (16) form a pair of differential equation that cannot be solved independently since c is 

a function of .  Equation (17) can be solved to obtain a constant  on   and hence )( f  

on the whole of .  Then,       

( ( )), (0)
dx

c f x
dt

  
                (18)

 

Integrating (18) we have; 

  dtfcdx ))((   

( ( ))

( , ) ( )

x tc f

x t f

 

 

  


 
                  (19)

 

Where ( ) ( ( ))F c f   

We shall verify that (19) represents an analysis expression of the solution. 

Differentiating (19) w.r.t x and t, we obtain respectively 

( ) ,x xf                      (20) 

( )t tf                     (21) 

1 (1 ( )) xtf     

( ) (1 ( )) tF tF     

Eliminating x and t  then (20) and (21) become respectively 

( )

1 ( )
x

f

tF










                  (22)

 

( ) ( )

1 ( )
t

F f

tF

 








                 (23)
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Since ( ) ( ( )).F c f   Equation (6) is satisfied provided that 
11 ( ) 0.tF  

 
Also 

equation (19) satisfied the initial condition at 0t  since ,X  and it is unique. Suppose 

),( tx and ),( txq are two solutions. Then on  

( )

( , ) ( ,0) ( ) ( , )

X tF

x t f q x t

 

   

  


   
               (24)

 

When ( )c  is a constant and 0c , then (6) becomes a linear wave equation. The characteristics 

carves are  

 ctx
 
                                                                                                                                  (25) 

Also the solution  is given by  

)(),( ctxftx 
                 (26) 

 

4. APPLICATION OF THE MODEL 

Given that 0 1, 0.1, 0 100, 10t t x x      
 

 

Case 1 

100, 1, 0, ( , ) 25x c t x t       

)(),( ctxftx   

100, 0, 1, 25x t c       

Then  

)(),0( ctxft   

25),( tx  

25 (100 (1)(0))

25 100

25

100

1

4

f

f

f

f

 






 

Continuing this way we can obtain the values of f for 

0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0t   

Hence the results obtained for the values 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0t   

and 10,20,30,40,50,60,70,80,90,100x    using equation (26) are shown in Table 1. 
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Case 2
 

100, 0, 1, ( , ) 50

( ) 50

50 (100 (1)(0))

50 100

1

2

x t c x t

f x ct

f

f

f





   

  

 




 

Continuing this way we can obtain the values of f for 

0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0t   

Hence the results obtained for the values 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0t   and

10,20,30,40,50,60,70,80,90,100x    using equation (26) are shown in Table 2. 

Given that 0 1, 0.1, 0 50, 10t t x x      
 

 

Case 3 

50, 0, 1, ( , ) 25

( , ) ( )

25 (50 0)

25 50

25

50

1

2

x t c x t

x t f x ct

f

f

f

f





   

 

 







 

Continuing this way we can obtain the values of f for 

0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0t   

Hence the results obtained for the values 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0t   and

10,20,30,40,50x    using equation (26) are shown in Table 3. 

 

Case 4 

50, 0, 1, ( , ) 50

( , ) ( )

50 (50 (1)(0))

50 (50 0)

50 50

1

x t c x t

x t f x ct

f

f

f

f





   

 

 

 





 

Continuing this way we can obtain the values of f for 

0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0t   
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Hence the results obtained for the values 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0t   

and 10,20,30,40,50x    using equation (26) are shown in Table 4. 

 

4.1. Discussion of Results 

Tables 1, 2, 3 and 4 show that as the density of cars increases along a given length of road, the 

rate of interaction between the cars increases along the highways. Similarly, we observed that as 

the cars moves along the road from one point to another the rate of interaction also increases. 

Conversely, as the time progresses at a given distance, we observed that the rate of interaction 

reduces. 

 

4.2. Table of Results 

The results generated are shown in the Tables below as follows: 

 

Table-1. 25,0 100, 0 1, 1x t c        

t/x 0 10 20 30 40 50 60 70 80 90 100 

0.0 0.000 2.500 5.000 7.500 10.00 12.500 15.000 17.500 20.000 22.500 25.000 

0.1 0.025 2.475 4.975 7.475 9.975 12.475 14.975 17.475 19.957 22.475 24.475 

0.2 0.050 2.450 4.950 7.450 9.950 12.450 14.950 17.450 19.950 22.450 24.950 

0.3 0.075 2.425 4.925 7.425 9.925 12.425 14.925 17.425 19.925 22.425 24.925 

0.4 0.100 2.400 4.900 7.400 9.900 12.400 14.900 17.400 19.900 22.400 24.900 

0.5 0.125 2.375 4.875 7.375 9.875 12.375 14.875 17.375 19.875 22.375 24.875 

0.6 0.150 2.350 4.850 7.350 9.850 12.350 14.850 17.350 19.850 22.350 24.850 

0.7 0.175 2.325 4.825 7.325 9.825 12.325 14.825 17.325 19.825 22.325 24.825 

0.8 0.200 2.300 4.800 7.300 9.800 12.300 14.800 17.300 19.800 22.300 24.800 

0.9 0.225 2.275 4.775 7.275 9.775 12.275 14.775 17.275 19.775 22.775 24.775 

1.0 0.250 2.250 4.750 7.250 9.750 12.250 14.750 17.250 19.750 22.500 24.750 

Table-2. 50,0 100,0 1, 1x t c        

  

 

 

 

 

t/x 0 10 20 30 40 50 60 70 80 90 100 

0.0 0.00 5.00 10.0 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 

0.1 0.05 4.95 9.95 14.95 19.95 24.95 29.95 34.95 39.95 44.95 49.95 

0.2 0.10 4.90 9.90 14.90 19.90 24.90 29.90 34.90 39.90 44.90 49.90 

0.3 0.15 4.85 9.85 14.85 19.85 24.85 29.85 34.85 39.85 44.85 49.85 

0.4 0.20 4.80 9.80 14.80 19.80 24.80 29.80 34.80 39.80 44.80 49.80 

0.5 0.25 4.75 9.75 14.75 19.75 24.75 29.75 34.75 39.75 44.75 49.75 

0.6 0.30 4.70 9.70 14.70 19.70 24.70 29.70 34.70 39.70 44.70 49.70 

0.7 0.35 4.65 9.65 14.65 19.65 24.65 29.65 34.65 39.65 44.65 49.65 

0.8 0.40 4.60 9.60 14.60 19.60 24.60 29.60 34.60 39.60 44.60 49.60 

0.9 0.45 4.55 9.55 14.55 19.55 24.55 29.55 34.55 39.55 44.55 49.55 

1.0 0.50 4.50 9.50 14.50 19.50 24.50 29.50 34.50 39.50 44.50 49.50 
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Table-3. ( , ) 25,x t  ,500  x 0 1, 1t c    

t/x 0 10 20 30 40 50 

0.0 0.00 5.00 10.0 15.00 20.00 25.00 

0.1 0.05 4.95 9.95 14.95 19.95 24.95 

0.2 0.10 4.90 9.90 14.90 19.90 24.90 

0.3 0.15 4.85 9.85 14.85 19.85 24.85 

0.4 0.20 4.80 9.80 14.80 19.80 24.80 

0.5 0.25 4.75 9.75 14.75 19.75 24.75 

0.6 0.30 4.70 9.70 14.70 19.70 24.70 

0.7 0.35 4.65 9.65 14.65 19.65 24.65 

0.8 0.40 4.60 9.60 14.60 19.60 24.60 

0.9 0.45 4.55 9.55 14.55 19.55 24.55 

1.0 0.50 4.50 9.50 14.50 19.50 24.50 

 

Table-4. ( , ) 50,x t  ,500  x 0 1,t  1c   

 

5. CONCLUSION 

As earlier mentioned this model is a precise mathematical description of how groups of 

moving vehicles interact and being affected by density, spotlights and other infrastructures on the 

roadways. In view of this definition it is clear that traffic-flow model is an indispensable tool to 

assist and enable the traffic and transportation engineers to understand and express the properties of 

traffic-flow on our roadways so as to design diligent, effective and operational street and highways 

thus making the roadways easier to drive on.  

The model also assists engineers to know where to put spotlights and other infrastructures like 

signage, control devices, markings etc. to reduce traffic congestion on the highways. 

The model directly or indirectly contributes to the improvement of accidents free on roadways 

by providing suitable mechanism to the construction of roadways. It gives high fortune to the 

maintenance of vehicles. Traffic-flow model provides traffic-engineers with the means to evaluate 

system wide control strategies in urban areas 

The quality of service provided to motorists can be monitored to assess the city’s ability to 

manage growth. 

t/x 0 10 20 30 40 50 

0.0 0.0 10 20.0 30.0 40.0 50.0 

0.1 0.1 9.9 19.9 29.9 39.9 49.9 

0.2 0.2 9.8 19.8 29.8 39.8 49.8 

0.3 0.3 9.7 19.7 29.7 39.7 49.7 

0.4 0.4 9.6 19.6 29.6 39.6 49.6 

0.5 0.5 9.5 19.5 29.5 39.5 49.5 

0.6 0.6 9.4 19.4 29.4 39.4 49.4 

0.7 0.7 9.3 19.3 29.3 39.3 49.3 

0.8 0.8 9.2 19.2 29.2 39.2 49.2 

0.9 0.9 9.1 19.1 29.1 39.1 49.1 

1.0 1.0 9.0 19.0 29.0 39.0 49.0 
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The model could also be used to compare traffic conditions among different cities in order to 

determine the allocation of resources for transportation system improvement. 

This model could be used to explain vehicle to vehicle interaction on the roadways and how 

highway infrastructures affect their movement which helps the traffic engineers to make the roads 

easier to drive on and suggest the appropriate number (density) of cars that should plight a 

particular road at a given time.        
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