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ABSTRACT 
 
This work presents Euler’s method for solving 
initial value problems in ordinary differential 
equations. This method is presented from the 
point of view of Taylor’s algorithm which 
considerably simplifies the rigorous analysis. We 
discuss the stability and convergence of the 
method under consideration and the result 
obtained is compared to the exact solution. The 
error incurred is undertaken to determine the 
accuracy and consistency of Euler’s method. 
 
(Keywords: differential equation, Euler’s method, error, 

convergence, stability) 
 
 
INTRODUCTION 
 
Differential equations can describe nearly all 
systems undergone change. They are ubiquitous 
in science and engineering as well as economics, 
social science, biology, business, etc. Many 
mathematicians have studied the nature of these 
equations and many complicated systems can be 
described quite precisely with compact 
mathematical expressions. However, many 
systems involving differential equations are so 
complex or the systems that they describe are so 
large that a purely analytical solution to the 
equation is not tractable.   
 
It is in these complex systems where computer 
simulations and numerical approximations are 
useful. The techniques for solving differential 
equations based on numerical approximations 
were developed before programmable computers 
existed. The problem of solving ordinary 
differential equations is classified into two namely 
initial value problems and boundary value 
problems, depending on the conditions at the end 
points of the domain are specified. All the 

conditions of initial value problem are specified at 
the initial point. There are numerous methods that 
produce numerical approximations to solution of 
initial value problem in ordinary differential 
equation such as Euler’s method which was the 
oldest and simplest such method originated by 
Leonhard Euler in 1768, Improved Euler method, 
Runge Kutta methods described by Carl Runge 
and Martin Kutta in 1895 and 1905, respectively.  
 
There are many excellent and exhaustive texts on 
this subject that may be consulted, such as Boyce 
and DiPrima (2001), Erwin (2003), Stephen 
(1983), Collatz (1960), and Gilat (2004) just to 
mention few. In this work we present the practical 
use and the convergence of Euler method for 
solving initial value problem in ordinary differential 
equation.   
 
 
NUMERICAL METHOD 
 
The numerical method forms an important part of 
solving initial value problem in ordinary differential 
equation, most especially in cases where there is 
no closed form analytic formula or difficult to 
obtain exact solution. Next, we shall present 
Euler’s method for solving initial value problems 
in ordinary differential equations. 
 
 
Euler’s Method 
 
Euler’s method is also called tangent line method 
and is the simplest numerical method for solving 
initial value problem in ordinary differential 
equation, particularly suitable for quick 
programming which was originated by Leonhard 
Euler in 1768. This method subdivided into three 
namely: 
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 Forward Euler’s method. 

 Improved Euler’s method. 

 Backward Euler’s method. 

In this work we shall only consider forward Euler’s 
method. 
 
 
Derivation of Euler’s Method 
 
We present below the derivation of Euler’s 
method for generating, numerically, approximate 
solutions to the initial value problem: 
 

))(,( xyxfy                (1)     

                                                  

00 )( yxy          (2)    

                                                                          

Where 0x and 0y are initial values for x  and y
,
 

respectively. Our aim is to determine 
(approximately) the unknown function 

)(xy for 0xx  . We are told explicitly the value 

of )( 0xy , namely 0y , using the given differential 

equation (1), we can also determine exactly the 

instantaneous rate of change of y at point 0x  

 

))(,()( 000 xyxfxy   = ),( 00 yxf
  (3)

  

                                                                                  
   

 

If the rate of change of )(xy were to remain 

),( 00 yxf for all point x , then )(xy would 

exactly ))(,( 0000 xxyxfy  . The rate of 

change of )(xy does not remain ),( 00 yxf  for 

all x , but it is reasonable to expect that it remains 

close to ),( 00 yxf  for x close to 0x . If this is the 

case, then the value of )(xy  will remain close to 

))(,( 0000 xxyxfy  for x close to 0x , for 

small number h , we have: 

 

hxx  01     (4)    
                                                                                                

 

 

))(,( 010001 xxyxfyy 
 

1y = ),( 000 yxhfy 
       (5)

  

                                                                           

Where 01 xxh  and is called the step size. 

By the above argument: 

 11)( yxy 
     (6) 

                                                                                                        
Repeating the above process, we have at point 

1x  as follows: 

 

hxx  12     (7)  

                                                                                                                

))(,( 121112 xxyxfyy   

= ),( 111 yxhfy 
   (8)

  

                                                                                  
We have:  
 

22 )( yxy                              (9)  

                                                                                          

Then define for ,...5,4,3,2,1,0n , we have 

 

nhxxn  0     (10)
  

                                                                                                    
Suppose that, for some value of n , we are 

already computed an approximate value 

ny for )( nxy . Then the rate of change of )(xy for 

x  close to 

nx is ),())(,())(,( nnnn yxfxyxfxyxf  wh

ere ))(,()( nnnnn xxyxfyxy  . 

 
Thus,  
 

),()( 11 nnnnn yxhfyyxy    (11)
                                                                         

 
Hence, 
 

),(1 nnnn yxhfyy     (12)
   

                                                                                        
Equation (12) is called Euler’s method. From (12), 
we have: 
 

,...3,2,1,0),,(1 
 nyxf
h

yy
nn

nn
 (13)    

 
                                                                        
Truncation Errors For Euler’s Method 
 
Numerical stability and errors are discussed in 
depth in Lambert (1973) and Kockler (1994). 
There are two types of errors arise in numerical 
methods namely truncation error which arises 
primarily from a discretization process and round 



The Pacific Journal of Science and Technology               –154– 
http://www.akamaiuniversity.us/PJST.htm                                            Volume 13.  Number 2.  November 2012 (Fall) 

off error which arises from the finiteness of 
number representations in the computer. Refining 
a mesh to reduce the truncation error often 
causes the round off error to increase. To 
estimate the truncation error for Euler’s method, 
we first recall Taylor’s theorem with remainder, 

which states that a function )(xf can be 

expanded in a series about the point ax   
 

...
!2

))((
))(()()(

2





axaf

axafafxf

   

)!1(
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!

))(( 11











m

axf

m

axaf mmmm 
            

(14) 
 
The last term of (14) is referred to as the 

remainder term. Where .ax    

 

In (14), let 1 nxx and ax  , in which: 

 

)(
2

1
)()()( 2

1 nnnn yhxyhxyxy 

 
(15) 
                                                              

Where 1 nnn xx  . 

 
Since y satisfies the ordinary differential equation 

in (1), which can be written as: 
 

))(,()( nnn xyxfxy 
   (16)

 

 

Where )( nxy is the exact solution at nx . Hence, 

)(
2

1
))(,()()( 2

1 nnnnn yhxyxhfxyxy 

 
(17) 
                                                                   

By considering (17) to Euler’s approximation in 
(12), it is clear that Euler’s method is obtained by 

omitting the remainder term )(
2

1 2

nyh  in the 

Taylor expansion of )( 1nxy at the point nx . The 

omitted term accounts for the truncation error in 
Euler’s method at each step.  
 
 
 

Convergence of Euler’s Method 
 
The necessary and sufficient conditions for a 
numerical method to be convergent are stability 
and consistency. Stability deals with growth or 
decay of error as numerical computation 
progresses.  Now we state the following theorem 
to discuss the convergence of Euler’s method. 
 
 

Theorem: If ),( yxf   satisfies a Lipschitz 

condition in y and is continuous in x for 

ax 0 and defined a sequence ny , where 

kn ,...,2,1 and if )0(0 yy  , then 

)(xyyn  as n uniformly in x  where 

)(xy is the solution of the initial value problem (1) 

and (2). 
 
 
Proof: we shall start the proof of the above 
theorem by deriving a bound for the error: 
 

)( nnn xyye 
   

(18) 

 

Where ny and )( nxy are called numerical and 

exact values respectively. We shall also show 
that this bound can be made arbitrarily small. If a 
bound for the error depends only on the 
knowledge of the problem but not on its 

solution )(xy  , it is called an a priori bound. If, on 

the other hand, knowledge of the properties of the 
solution is required, its error bound is referred to 
as an a posteriori bound. 
 
To get an a priori bound, let us write: 
 

nnnnn tyxhfxyxy  ),()()( 1   (19) 

 

Where nt is called the local truncation error. It is 

the amount by which the solution fails to satisfy 
the difference method. Subtracting (19) from (12), 
we get: 
 

nnnnnnn txyxfyxfhee  ))](,(),([1      

       (20)  
                         
Let us write: 
 

))(,(),( nnnnnn xyxfyxfMe    (21)  
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Substituting (20) into (21), then:  
 

)1(1 nnn hMee      (22)  

                         

This is the difference equation for ne . The error 

0e is known, so it can be solved if we know 

nM and nt . We have a bound of the Lipschitz 

constant M for nM . Suppose we also 

have ntT  . Then we have: 

 

  ThMee nn  11    (23) 

                                                                                                                            
To proceed further, we need the following lemma. 
 

Lemma: If ne  satisfies (23) and anh 0 , 

then: 
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 (24)                                                           

 
Lemma: The first inequality of (24) follows by 

induction. It is trivially true for 0n . Assuming 

that it is true for n , we have from (23): 
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(25)   
                                                                                    

Hence (24) is true for 1n and thus for all n . The 

second inequality in (25) follows from the fact that 

anh  and for 0hM ,   MhehM 1  so 

that   MaMnhn
eehM 1 , proving the lemma. 

To continue the proof of the theorem, we need to 

investigateT , the bound on the local truncation 
error.  
 
From (19), we have: 
 

 )(,)()( 1 nnnnn xyxhfxyxyt    

By the Mean value theorem, we get for 10  ,  

  ))(,())(,( nnnn xyxfxyhxfh 

))(,())(,( nnnn xyhxfhxyhxfh    

  ))(,())(,( nnnn xyxfxyhxfh 

)()( nn xyhxyh      (26) 

 
The last term can be treated by the Mean value 
theorem to get a bound 

,)( 22 MZhgyhM  where  

)(max xyZ  , the inequality exists because of 

the continuity of y and f in a closed region. The 

treatment of the first term in (26) depends on our 
hypothesis. If we are prepared to assume that 

),( yxf also satisfies a Lipschitz condition in x , 

we can bound the first term in (26) by 
2hL , 

where L is the Lipschitz constant for )(xf . 

Consequently, TMZLhtn  )(2
and so 

from (24), we get: 
                               

0)1( eee
M

MZL
he MaMa

n 


   (27) 

                                                             

Thus the numerical solution converges as 0h , 

if .00 e  

 
 
Algorithm for Euler’s Method (Samuel, 1981) 
 
The typical steps of Euler’s method are given 
below: 
 

Step 1: define ),( nn yxf  

 

Step 2: input initial values 0x and 0y  

 

Step 3: input step sizes h and number of steps n  

 
Step 4: calculate x and y  

                            for 1:1  Nn  

                            hxx nn 1    

                           ),(1 nnnn yxhfyy   

 

Step 5: output 1nx and 1ny  
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Step 6: end 
 
 
NUMERICAL EXAMPLES 
 
Now, we present some numerical examples as 
follows: 
 

Example 1: A ball at c0927 is allowed to cool 

down in air at an ambient temperature of c027 . 

Assuming heat is lost only due to radiation. The 
differential equation for the temperature of the ball 
is given by: 
                      

c
dt

d 09412 927)0(),101.8(102067.2   


 

Find the temperature at st 480 . Assume a step 

size of sh 240 . 

 
Step 1: 

)101.8(102067.2 9412   


dt

d
, 00 t , 

 

k12000   

 

),101.8(102067.2),( 9412   tf  

 

),(1 nnnn thf    

 

),( 0001 ythf  

 

)1200,0(24012001 f  

)102067.2)(101.81200(2401200 1294 

k09.106)240)(5574.4(1200   

 
Therefore,  
 

1 )( 1t , 240240001  htt  

 

109.106)240(   k  

 
 

Step 2: For 09.106,240,1 11  tn  

 

),( 1112 ythf  

 

)1200,240(24009.1061 f  

)102067.2)(101.809.106(2401200 1294 

k32.110)240)(017545.0(09.106   

 

2 )( 2t , 48024024012  htt  

 

232.110)480(   k  

 
The exact solution of the ordinary differential 
equation is given by the solution of a non linear 
equation as: 
 

9282.21022067.0

)00333.0(tan8519.1
300

300
ln92593.0

3

1




















t






 
 
The solution to this nonlinear equation at 

st 480 is k57.647)480(  . The effect of 

step size on Euler’s method is shown in Table 1 
and Figure 1. 
 
 

Table 1: Effect of Step Size (Temperature at 

480seconds as a function of step size, h ). 
 

Step Size, h  )480(  
tE  

t  

60 546.77 32.607 5.0352 

120 110.32 100.80 15.566 

240 110.32 537.26 82.964 

480 -987.8 1635.4 252.54 

 
 

Example 2: We use Euler’s method to 
approximate the solution of the initial value 

problem 2)0(,  yxyy , with step size 

1.0h on the interval 10  x whose exact 

solution is given by 1)(  xexy x
. The results 

obtained shown in Table 2, the comparison of the 
method to the exact solution and the error 
incurred in Euler’s method. 
 
 
 
 
Figure 1: Effect of Step Size on Euler’s Method 
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Table 2: The Comparative Result Analysis and 
Error generated from Euler’s Method. 

 
n  

nx  ny  )( nxy  nnn yxye  )(  

0 0.0 2.0000 2.0000 0.0000 

1 0.1 2.2000 2.2052 0.0052 

2 0.2 2.4100 2.4214 0.0114 

3 0.3 2.6310 2.6498 0.0188 

4 0.4 2.8641 2.8918 0.0277 

5 0.5 3.1105 3.1487 0.0382 

6 0.6 3.3716 3.4221 0.0505 

7 0.7 3.6487 3.7137 0.0650 

8 0.8 3.9436 4.0255 0.0819 

9 0.9 4.2579 4.3596 0.1017 

10 1.0 4.5937 4.7182 0.1245 

 
 
Example 3: We shall approximate the solution of 

the initial value problem
21 yy  , 2)0( y  

using Euler’s method with step size 1.0h on 

the interval 10  x whose exact solution is 

given by xxy tan)(  . The results obtained 

shown in Table 3, the comparison of the method 
to the exact solution and the error incurred in 
Euler’s method. 
 
 
DISCUSSION OF RESULTS  
 
We notice that in example 1, the accuracy of the 
approximations gets worse as we further away 
from the initial value and in examples 2 and 3, the 
error get larger as n increases. 

 
 

Table 3: The Comparative Result Analysis and 
Error generated from Euler’s Method. 

 

n  
nx  ny  )( nxy  nnn yxye  )(

 

0 0.0 0.0000 0.0000 0.0000 

1 0.1 0.1000 0.1003 0.0003 

2 0.2 0.2010 0.2027 0.0017 

3 0.3 0.3050 0.3093 0.0043 

4 0.4 0.4143 0.4227 0.0084 

5 0.5 0.5315 0.5463 0.0148 

6 0.6 0.6598 0.6841 0.0243 

7 0.7 0.8033 0.8422 0.0389 

8 0.8 0.9678 1.0296 0.0618 

9 0.9 1.1615 1.2601 0.0986 

10 1.0 1.3964 1.5574 0.1610 

 
 
CONCLUSION 
 
In general, each numerical method has its own 
advantages and disadvantages of use: Euler’s 
method is therefore best reserved for simple 
preferably, recursive derivatives that can be 
represented by few terms. It is simple to 
implement and simplifies rigorous analysis. The 
major disadvantages of this method are the 
tiresome, sometimes impossible calculation of 
higher derivatives and the slow convergence of 
the series for some functions which involves 
terms of opposite sign. 

 
 
REFERENCES 
 
1. Boyce, W.E. and R.C. DiPrima. 2001. Elementary 

Differential Equation and Boundary Value 
Problems. John Wiley and Sons: New York, NY. 
 

2. Collatz, L. 1960. Numerical Treatment of 
Differential Equations. Springer Verlag: Berlin, 
Germany. 
 

3. Erwin, K. 2003. Advanced Engineering 
Mathematics. Eighth Edition. Wiley Publishers: 

New York, NY. 
 

4. Gilat, A. 2004. Matlab: An Introduction with 
Application. John Wiley and Sons: New York, NY. 

 
5. Kockler, N. 1994. Numerical Methods and 

Scientific Computing. Clarendon Press: Oxford, 
UK. 
 

6. Lambert, J.D. 1991. Numerical Method for 
Ordinary Systems of Initial Value Problems. John 
Wiley and Sons: New York, NY.   

7. Samuel, D.C. 1981. Elementary Numerical 
Analysis: An Algorithm Approach. Third Edition. 
Mc Graw International Book Company: New York, 
NY. 



The Pacific Journal of Science and Technology               –158– 
http://www.akamaiuniversity.us/PJST.htm                                            Volume 13.  Number 2.  November 2012 (Fall) 

 
8. Stephen, M.P. 1983. To Compute Numerically, 

Concepts and Strategy. Little Brown and 

Company. Ottawa, Canada. 
 

 
ABOUT THE AUTHORS 
 
Sunday Fadugba, is a Lecturer in the 
Department of Mathematical and Physical 
Sciences, Afe Babalola University, Ado Ekiti, 
Nigeria. He is a registered member of Journal of 
Mathematical Finance. He holds a Master of 
Science (M.Sc.) in Mathematics from the 
University of Ibadan, Nigeria. His research 
interests are in Numerical Analysis and Financial 
Mathematics. 
  
Dr. (Mrs.) Bosede Ogunrinde, is a Lecturer I in 
the Department of Mathematical Sciences, Ekiti 
State University, Ado Ekiti, Nigeria. She holds a 
Ph.D. degree in Mathematics. Her research 
interests are in Ordinary Differential Equations 
and Numerical Analysis. 
 
Tayo Okunlola, is a Lecturer in the Department 
of Mathematical and Physical Sciences, Afe 
Babalola University, Ado Ekiti, Nigeria. He holds a 
Master of Science in Mathematics from University 
of Ibadan, Nigeria. His research interest is in 
Numerical Analysis. 
 
 
 
 
 
 
 

SUGGESTED CITATION  
 
Fadugba, S., B. Ogunrinde, and T. Okunlola. 
2012.  “Euler’s Method for Solving Initial Value 
Problems in Ordinary Differential Equations”. 
Pacific Journal of Science and Technology. 
13(2):152-158. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Pacific Journal of Science and Technology 

http://www.akamaiuniversity.us/PJST.htm

