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Abstract: This paper presents binomial model for pricing vanilla options. Binomial model can 

be used to accurately price American style options than the Black-Scholes model as it takes 

into consideration the possibilities of early exercise and other factors like dividends. The 

strength and weakness of this model were considered. This model is both computationally 

efficient and accurate but not adequate to deal with path dependent options. 
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1.0 INTRODUCTION  

In the past two decades, options have undergone a transformation from specialized and 

obscure securities to ubiquitous components of the portfolio of not only large fund 

managers, but also ordinary investors. Essential ingredients of any successful modern 

investment strategy include the ability to generate income streams and reduce risk, as well 

as some level of speculation all of which can be accomplished by effective use of options. 

An option is a financial contract or a contingent claim that gives the holder the right, but not 

the obligation to buy or sell an underlying asset for a predetermined price called the strike 

or exercise price during a certain period of time. Options come in a variety of “flavours”. A 

vanilla option offers the right to buy or sell an underlying security by a certain date at a set 

strike price. In comparison to other option structures, vanilla options are not fancy or 

complicated. Such options may be well-known in the markets and easy to trade.  

Increasingly, however, the term vanilla option is a relative measure of complexity, especially 

when investors are considering various options and structures. Examples of vanilla options 

are an American option which allows exercise at any point during the life of the option and a 

European option that allows exercise to occur only at expiration. 

Black and Scholes published their seminar work on option pricing [1] in which they 

described a mathematical frame work for finding the fair price of a European option. They 

used a no-arbitrage argument to describe a partial differential equation which governs the 

evolution of the option price with respect to the maturity time and the price of the 

underlying asset. 

The subject of numerical methods in the area of option pricing and hedging is very broad, 

putting more demands on computation speed and efficiency. A wide range of different 

types of contracts are available and in many cases there are several candidate models for 

the stochastic evolution of the underlying state variables [10]. 

Now, we present an overview of binomial model in the context of Black-Scholes-Merton [1, 

8] for pricing vanilla options based on a risk-neutral valuation which was first suggested and 

derived by Cox-Ross-Rubinstein [4] and assumes that stock price movements are composed 

of a large number of small binomial movements. Other procedures are finite difference 



  International Journal of Advanced Research in  
 Engineering and Applied Sciences  ISSN: 2278-6252 
 

Vol. 1 | No. 1 | July 2012 www.garph.co.uk IJAREAS | 15 
 

methods for pricing derivative governed by solving the underlying partial differential 

equations was considered by Brennan and Schwarz [3] and  Monte Carlo method for pricing 

European option and path dependent options was introduced by Boyle [2]. The comparative 

study of finite difference method and Monte Carlo method for pricing European option was 

considered by Fadugba, Nwozo and Babalola [6]. Later, on the stability and accuracy of finite 

difference method for option pricing was considered by Fadugba and et al [5]. These 

procedures provide much of the infrastructure in which many contributions to the field over 

the past three decades have been centered. 

In this paper we shall consider only the strength and weakness of binomial model for pricing 

vanilla options namely American and European options.  

2.0 BINOMIAL MODEL 

This is defined as an iterative solution that models the price evolution over the whole option 

validity period. For some vanilla options such as American option, iterative model is the only 

choice since there is no known closed form solution that predicts its price over a period of 

time. The Cox-Ross-Rubinstein “Binomial” model [4] contains the Black-Scholes analytic 

formula as the limiting case as the number of steps tends to infinity.  Next we shall present 

the derivation and the implementation of the binomial model below. 

2.1 THE COX-ROSS-RUBINSTEIN MODEL [4, 7] 

We know that after a period of time, the stock price can move up to Su with probability p

or down to Sd with probability ( p−1 ), where 1>u  and .10 << d  Therefore the 

corresponding value of the call option at the first time movement tδ is given by 

)0,max( KSufu −=                                                                                                                       (1)                                                                                                                                                         

)0,max( KSf dd −=                                                                                                                      (2) 

Where uf and df are the values of the call option after upward and downward movements 

respectively. 

We need to derive a formula to calculate the fair price of vanilla options. The risk neutral call 

option price at the present time is given by  

])1([ du
tr fppfef −+= − δ                                                                                                            (3) 

Where the risk neutral probability is given by  
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du
dep

tr

−
−

=
δ

                                                                                                                                  (4) 

Now, we extend the binomial model to two periods. Let uuf denote the call value at time 

tδ2 for two consecutive upward stock movements, udf for one downward and one upward 

movement and ddf for two consecutive downward movements of the stock price [9]. Then 

we have  

)0,max( KSuufuu −=                                                                                                                                

(5) 

)0,max( KSudfud −=                                                                                                                               

(6) 

)0,max( KSddfdd −=                                                                                                                               

(7) 

The values of the call options at time tδ are  

])1([ uduu
tr

u fppfef −+= − δ                                                                                                          (8) 

])1([ ddud
tr

d fppfef −+= − δ                                                                                                         (9) 

Substituting (8) and (9) into (3), we have  

)])1(()1()1([ ddud
tr

uduu
trtr fppfepfpfpeef −+−+−+= −−− δδδ  

)])1()1(2[ 222
dduduu

tr fpfppfpef −+−+= − δ                                                                         (10) 

Equation (10) is called the current call value, where the numbers 2p , )1(2 pp −  and 2)1( p−

are the risk neutral probabilities for the underlying asset prices Suu , Sud and Sdd

respectively. 

We generalize the result in (10) to value an option at tNT δ= as follows 

∑
=

−−
−−=

N

j
du

jNj
j

NtNr
jNjfppCef

0
)1(δ  

∑
=

−−− −−=
N

j

jNjjNj
j

NtNr KdSuppCef
0

)0,max()1(δ                                                                (11) 

Where )0,max( KdSuf jNj
du jNj −= −

−  and 
!)!(

!
jjN

NC j
N

−
=  is the binomial coefficient. We 

assume that m is the smallest integer for which the option’s intrinsic value in (11) is greater 

than zero. This implies that KdSu mNm ≥− . Then (11) can be written as  
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∑
=

−−− −=
N

j

jNjjNj
j

NtNr duppCSef
0

 )1(δ  

                         ∑
=

−−
−−−

N

j
du

jNj
j

NtNr
jNjfppCKe

0
)1(δ                                                                  (12) 

Equation (12) gives us the present value of the call option. 

The term tNre δ− is the discounting factor that reduces f to its present value. We can see 

from the first term of (12) that -1is the binomial probability of j upward movements to 

occur after the first N trading periods and jNj dSu − is the corresponding value of the asset 

after j upward movements of the stock price. The second term of (12) is the present value 

of the option’s strike price. Let treQ δ−= , we substitute Q in the first term of (12) to yield 

∑
=

−−− −=
N

j

jNjjNj
j

NN duppCSQf
0

 )1(  

                         ∑
=

−−
−−−

N

j
du

jNj
j

NtNr
jNjfppCKe

0
)1(δ  

∑
=

−−− −=
N

j

jNj
j

N dpQpuQCSf
0

11  ])1([][  

                         ∑
=

−−
−−−

N

j
du

jNj
j

NtNr
jNjfppCKe

0
)1(δ                                                                  (13) 

Now, let ),;( pNmΦ be the binomial distribution function given by 

∑
=

−−=Φ
N

j

jNj
j

N ppCpNm
0

)1(),;(                                                                                              (14) 

Equation (14) is the probability of at least m  success in N independent trials, each resulting 

in a success with probability p and in a failure with probability )1( p− . Then let puQp 1−=′  

and dpQp )1()1( 1 −=′− − . Consequently, it follows that  

),;(),;( pNmKepNmSf rTΦ−′Φ= −                                                                                       (15) 

The model in (15) was developed by Cox-Ross-Rubinstein [6], where
N
Tt =δ  and we will 

refer to it as CRR model. The corresponding put value of the European option can be 

obtained using call put relationship of the form SPKeC E
rt

E +=+ − as  
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),;(),;( pNmSpNmKef rT ′Φ−Φ= −                                                                                          (16) 

 

Where the risk free interest rate is denoted by r , EC is the European call, EP is the European 

put and S is the initial stock price. European option can only be exercised at expiration, 

while for an American option, we check at each node to see whether early exercise is 

advisable to holding the option for a further time period tδ . When early exercise is taken 

into consideration, the fair price must be compared with the option’s intrinsic value [7]. 

2.2 NUMERICAL IMPLEMENTATION 

Now, we present the implementation of binomial model for pricing vanilla options as 

follows. 

When stock price movements are governed by a multi-step binomial tree, we can treat each 

binomial step separately. The multi-step binomial tree can be used for the American and 

European style options. 

Like the Black-Scholes, the CRR formula in (15) can only be used in the valuation of 

European style options and can easily be implemented in Matlab. To overcome this 

problem, we use a different multi-period binomial model for the American style options on 

both the dividend and non-dividend paying stocks. Now we present the Matlab 

implementation. 

The stock price of the underlying asset for non-dividend and dividend paying stocks are 

given respectively by 

1,...1,0,,...,1,0, −==− iNNjdSu jNj                                                                                           (17) 

,...1,,,...,1,0,)1( +==− − iiNNjduS jNjλ                                                                                  (18) 

Where the dividend is denoted by λ  that reduces underlying price of the asset. 

For the European call and put options, the Matlab code takes into consideration on the 

prices at the maturity date T and the stock prices for non-dividend paying stocks in (17). The 

call and put prices of European option are given by (15) and (16) respectively. 

For the American call and put options, the Matlab code will incorporate the early exercise 

privilege and the dateT , when the dividend will be paid. Then, it implies that the stock 

prices will exhibit (17) and (18). The call and put prices of American option for non-dividend 

paying stock are given by 
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))],;(),;((,max[ pNmKepNmSKSf rT
T Φ−′Φ−= −                                                                (19)  

))],;(),;((,max[ pNmSpNmKeSKf rT
T ′Φ−Φ−= −                      

(20) 

For dividend paying stock, we replace (17) with (18) in (12) and substitute in (19) and (20) to 

get respectively the call and put prices of American option. 

3.0 NUMERICAL EXAMPLES 

Now, we present some numerical examples. 

Example 1 

We compute the values of vanilla options. The results in Tables 1 and 2 for both European 

and American options are compared to those obtained using Black-Scholes analytic pricing 

formula. The rate of convergence for binomial model may be assessed by repeatedly 

doubling the number of time step N . Tables 1 and 2 use the parameters below in 

computing the options prices as we increase the number of steps.  

4
1,

10
1,

2
1,40,45 ===== σrTKS  

The Black-Scholes price for call and put options are 6200.7  and 6692.0  respectively. 

Table 1: Comparison of the Binomial Model to Black-Scholes Value of the Option as we 

increase N  

N  European call American call European put American put 

10 7.6184 7.6184 0.6676 0.7124 

20 7.6305 7.6305 0.6797 0.7235 

30 7.6042 7.6042 0.6534 0.7027 

40 7.6241 7.6251 0.6742 0.7228 

50 7.6070 7.6070 0.6562 0.7101 

60 7.6219 7.6219 0.6710 0.7199 

70 7.6209 7.6209 0.6701 0.7207 

80 7.6124 7.6124 0.6616 0.7134 

90 7.6210 7.6210 0.6702 0.7201 

100 7.6216 7.6216 0.6707 0.7214 
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Table 2: The Comparison of the Convergence of the Binomial Model and Black-Scholes Value 

of Option as we double the value of N  

N  European Call American Call European Put American Put 

20 7.6305 7.6305 0.6797 0.7235 

40 7.6251 7.6251 0.6742 0.7228 

60 7.6219 7.6219 0.6710 0.7199 

80 7.6124 7.6124 0.6616 0.7134 

100 7.6216 7.6216 0.6707 0.7214 

120 7.6181 7.6181 0.6673 0.7182 

140 7.6209 7.6209 0.6700 0.7211 

160 7.6178 7.6178 0.6670 0.7184 

180 7.6211 7.6211 0.6703 0.7213 

200 7.6171 7.6171 0.6663 0.7185 

    

Example 2 

Consider pricing a vanilla option on a stock paying a known dividend yield with the following 

parameters: 

20
1,

6
1,

4
1,

2
1,

10
1,50 ====== λτσTrS  

Table 3: Out of the Money, at the Money and in the Money Vanilla Options on a Stock 

Paying a Known Dividend Yield 

K  European 

Call 

American 

Call 

Early 

Exercise 

Premium 

European 

Put 

American 

Put 

Early 

Exercise 

Premium 

30 18.97 20.50 1.53 0.004 0.004 0.00 

45 6.06 6.47 0.41 1.37 1.49 0.12 

50 3.32 3.42 0.10 3.38 3.78 0.40 

55 1.62 1.63 0.01 6.40 7.31 0.91 

70 0.11 0.11 0.00 19.19 21.35 2.16 
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4.0 DISCUSSION OF RESULTS 

We can see from Table 1 that Black-Scholes formula for the European call option can be 

used to value its counterpart American call option for it is never optimal to exercise an 

American call option before expiration. As we increase the value of N , the value of the 

American put option is higher than the corresponding European put option as we can see 

from the above Tables because of the early exercise premium. Sometime the early exercise 

of the American put option can be optimal.  

Table 2 shows that binomial model converges faster and closer to the Black-Scholes value as 

the value of N is doubled. This method is very flexible in pricing vanilla option.  

Table 3 shows that the American option on the dividend paying stock is always worth more 

than its European counterpart. A very deep in the money, American option has a high early 

exercise premium. The premium of both put and call option decreases as the option goes 

out of the money. The American and European call options are not worth the same as it is 

optimal to exercise the American call early on a dividend paying stock. A deep out of the 

money, American and European call options are worth the same. This is due to the fact that 

they might not be exercised early as they are worthless. The above results can be obtained 

using Matlab codes.   

5.0 CONCLUSION 

Options come in many different flavours such as path dependent or non-path dependent, 

fixed exercise time or early exercise options and so on. Binomial model is suited to dealing 

with some of these option flavours. 

In general, binomial model has its strengths and weaknesses of use. This model is good for 

pricing options with early exercise opportunities, accurate, converges faster and it is 

relatively easy to implement but can be quite hard to adapt to more complex situations.  

We conclude that binomial model is good for pricing vanilla options most especially 

American and European options. 
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